Skip to main content
Linderman Library Rotunda stained glass dome
Terry Napier, Professor and Department Chair of Mathematics portrait

Terry Napier

Professor

Department Chair

610.758.3755
tjn2@lehigh.edu
0017 - Chandler-Ullmann Hall
Education:

B.S., Mathematics, The University of Notre Dame,1982

M.S., Mathematics, The University of Chicago, 1983

Ph.D., Mathematics, The University of Chicago, 1989

Explore this Profile
×

Research Areas

Additional Interests

  • Complex Geometry

Research Statement

Napier works mainly on questions related to the Levi problem, or more precisely, on determining conditions on the topology, geometry, and potential theory of a (Kähler) complex manifold that imply the existence of a great many holomorphic functions.

Biography

Napier has been at Lehigh since 1992.

Publications since 2008:

1.  With M. Ramachandran, Filtered ends, proper holomorphic mappings of Kähler manifolds to Riemann surfaces, and Kähler groups, Geom. Funct. Anal. 17, (2008), no. 5, 16211654.

2. With M. Ramachandran, L2Castelnuovo−de Franchis, the cup product lemma, and  filtered ends of Kähler groups, J. of Top. and Anal. 1, (2009), no. 1, 2964.

3.  With M. Fraboni,  Strong q-convexity in uniform neighborhoods of subvarieties in coverings of complex spaces, Math. Z. 265 (2010), no. 3, 653−685.

4.  With M. Ramachandran, An introduction to Riemann surfaces, Birkhäuser Boston, 2011, 560 pages (book).                          

5. With M. Ramachandran, The Bochner−Hartogs dichotomy for bounded geometry hyperbolic complete Kähler manifolds, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 1, 239−270.

6. With M. Ramachandran, A cup product lemma for continuous plurisubharmonic  functions, Journal of Topology and Analysis 10 (2018), no. 2, 263−287.

7.  With M. Ramachandran, Weakly special filtered ends of complete Kähler manifolds, proper holomorphic mappings to Riemann surfaces, and the Bochner−Hartogs dichotomy,  Houston J. Math. 45 (2019), no. 1, 129−173.

Teaching

Courses taught:

21–23 Calculus I–III; 31–33 Honors Calculus I–III; 75 Calculus I–Part A, 76 Calculus I–Part B;  5  Introduction to Mathematical Thought; 12  Basic Statistics; 208 Complex Variables;  219/301 Principles of Analysis I, 220 Principles of Analysis II;  316 Complex Analysis; 320 Ordinary Differential Equations; 401 Real Analysis I, 402 Real Analysis II;  416 Complex Function Theory, 453 Function Theory.